首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2287篇
  免费   105篇
  国内免费   775篇
安全科学   173篇
废物处理   141篇
环保管理   164篇
综合类   1270篇
基础理论   402篇
污染及防治   711篇
评价与监测   80篇
社会与环境   67篇
灾害及防治   159篇
  2023年   43篇
  2022年   121篇
  2021年   108篇
  2020年   65篇
  2019年   69篇
  2018年   82篇
  2017年   106篇
  2016年   111篇
  2015年   147篇
  2014年   164篇
  2013年   241篇
  2012年   189篇
  2011年   202篇
  2010年   150篇
  2009年   126篇
  2008年   158篇
  2007年   129篇
  2006年   106篇
  2005年   77篇
  2004年   63篇
  2003年   75篇
  2002年   64篇
  2001年   62篇
  2000年   60篇
  1999年   82篇
  1998年   61篇
  1997年   58篇
  1996年   49篇
  1995年   49篇
  1994年   28篇
  1993年   38篇
  1992年   31篇
  1991年   24篇
  1990年   14篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1984年   3篇
  1981年   2篇
  1958年   1篇
排序方式: 共有3167条查询结果,搜索用时 218 毫秒
991.
Emissions from mobile sources and stationary sources contribute to atmospheric pollution in China, and its components, which include ultrafine particles (UFPs), volatile organic compounds (VOCs), and other reactive gases, such as NH3 and NOx, are the most harmful to human health. China has released various regulations and standards to address pollution from mobile and stationary sources. Thus, it is urgent to develop online monitoring technology for atmospheric pollution source emissions. This study provides an overview of the main progress in mobile and stationary source monitoring technology in China and describes the comprehensive application of some typical instruments in vital areas in recent years. These instruments have been applied to monitor emissions from motor vehicles, ships, airports, the chemical industry, and electric power generation. Not only has the level of atmospheric environment monitoring technology and equipment been improving, but relevant regulations and standards have also been constantly updated. Meanwhile, the developed instruments can provide scientific assistance for the successful implementation of regulations. According to the potential problem areas in atmospheric pollution in China, some research hotspots and future trends of atmospheric online monitoring technology are summarized. Furthermore, more advanced atmospheric online monitoring technology will contribute to a comprehensive understanding of atmospheric pollution and improve environmental monitoring capacity.  相似文献   
992.
The formation and aging mechanism of secondary organic aerosol (SOA) and its influencing factors have attracted increasing attention in recent years because of their effects on climate change, atmospheric quality and human health. However, there are still large errors between air quality model simulation results and field observations. The currently undetected components during the formation and aging of SOA due to the limitation of current monitoring techniques and the interactions among multiple SOA formation influencing factors might be the main reasons for the differences. In this paper, we present a detailed review of the complex dynamic physical and chemical processes and the corresponding influencing factors involved in SOA formation and aging. And all these results were mainly based the studies of photochemical smog chamber simulation. Although the properties of precursor volatile organic compounds (VOCs), oxidants (such as OH radicals), and atmospheric environmental factors (such as NOx, SO2, NH3, light intensity, temperature, humidity and seed aerosols) jointly influence the products and yield of SOA, the nucleation and vapor pressure of these products were found to be the most fundamental aspects when interpreting the dynamics of the SOA formation and aging process. The development of techniques for measuring intermediate species in SOA generation processes and the study of SOA generation and aging mechanism in complex systems should be important topics of future SOA research.  相似文献   
993.
Certain poly- and perfluoroalkyl substances (PFASs) exhibit significant bioaccumulation/biomagnification behaviors in ecosystems. PFASs, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS) and related precursors, have elicited attention from both public and national regulatory agencies, which has resulted in worldwide restrictions on their production and use. Apex predators occupy the top trophic positions in ecosystems and are most affected by the biomagnification behavior of PFASs. Meanwhile, the long lifespans of apex predators also lead to the high body burden of PFASs. The high body burden of PFASs might be linked to adverse health effects and even pose a potential threat to their reproduction. As seen in previous reviews of PFASs, knowledge is lacking between the current stage of the PFAS body burden and related effects in apex predators. This review summarized PFAS occurrence in global apex predators, including information on the geographic distribution, levels, profiles, and tissue distribution, and discussed the trophic transfer and ecotoxicity of PFASs. In the case where legacy PFASs were restricted under international convention, the occurrence of novel PFASs, such as 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) and perfluoroethylcyclohexane sulfonate (PFECHS), in apex predators arose as an emerging issue. Future studies should develop an effective analytical method and focus on the toxicity and trophic transfer behavior of novel PFASs.  相似文献   
994.
介绍了气体泄漏红外成像检测技术的工作原理和分类,综述了国内外相关单位的研究进展,重点分析了国外公司对被动式红外成像检测技术的研究情况,并对技术的发展方向进行了展望。  相似文献   
995.
通过对某地10个加油站所在场地土壤及地下水现场采样、实验室检测,分析加油站对土壤与地下水污染原因,结合国家政策法规以及加油站土壤地下水调查现状,针对加油站污染状况提出加强加油站土壤及地下水污染隐患排查力度、强化加油站土壤地下水方面日常管理、污染加油站风险管控及修复工作、加快推进防渗池及双层罐等设施改造工作等建议。  相似文献   
996.
Pyrite is the most abundant sulfide semiconductor mineral with excellent optical properties. However, few reports have investigated its photocatalytic activity because of the low photogenerated carrier separation efficiency. In this work, a Z-scheme FeS2/Fe2O3 composite photocatalyst was fabricated in situ via structural transformation of pyrite through heat treatment. A remarkably enhanced photocatalytic performance was observed over the FeS2/Fe2O3 composite photocatalyst. Compared with the pristine pyrite, the degradation efficiency of carbamazepine (CBZ) reached 65% at the added hexavalent chromium (Cr(Ⅵ)) concentration of 20 mg/L and the Cr(Ⅵ) was nearly completely reduced in the mixed system using FeS2/Fe2O3 within 30 min under simulated solar light irradiation. The enhanced photocatalytic activity can be attributed to the efficient separation and transfer of photogenerated carriers in the FeS2/Fe2O3 composite photocatalyst. This facilitated the generation of ?OH, hole (h+) and ?O2? species, which participated in the photocatalytic reaction with CBZ. Based on the measurement of the active species and electric properties, a Z-scheme electron transfer pathway was proposed for the FeS2/Fe2O3 composite photocatalyst. This work broadens the application potential of pyrite in environmental remediation.  相似文献   
997.
Nano-Fe2O3 embedded in montmorillonite particles (Fe-Mt) were prepared to degrade diethyl phthalate (DEP) with citric acid (CA) under xenon light irradiation. Compared to pristine montmorillonite (Na-Mt), the embedding process increased 14.5-fold of iron content and 1.8-fold of specific surface area. The synthesized Fe-Mt have more oxygen vacancies than Fe2O3 nanoparticles (nFe2O3), which could induce more reactive oxygen species (ROSs) generation in the presence of CA under xenon lamp irradiation. Fe-Mt with CA enhanced photo-assisted degradation of DEP 2.5 times as compared to nFe2O3 with CA. Quenching experiments, electron paramagnetic resonance (EPR) spectroscopy and identification of products confirmed that surface-bound ?OH was the main radical to degrade DEP. Common anions (i.e., NO3?, CO32?, Cl?) and humic acid could compete ?OH with DEP and cause slower degradation of DEP. The removal efficiency of DEP was more than 56% with Fe-Mt after three recycles, and the dissolved Fe concentration from Fe-Mt was below 75 μmol/L, indicating Fe-Mt had a good stability as a catalyst. Fe-Mt together with CA appeared to be a promising strategy to remove organic pollutants in surface water, or topsoil under solar irradiation.  相似文献   
998.
Pristine alpine regions are ideal regions for investigating the long-range atmospheric transport and cold trapping effects of short chain chlorinated paraffins (SCCPs). The concentrations and alpine condensation of SCCPs were investigated in lichen samples collected from the southeastern Tibetan Plateau. The concentrations of SCCPs ranged from 3098 to 6999 ng/g lipid weight (lw) and appeared to have an increasing trend with altitude. For congeners, C10 dominated among all the congener groups. The different environmental behavior for different congener groups was closely related to their octanol-air partition coefficient (Koa). C10 congeners showed an increasing trend with altitude, whereas C13 congeners were negatively correlated with altitude. Volumetric bioconcentration factors (BCF) of SCCPs reached 8.71 in lichens, which were higher than other semivolatile organic compounds (SVOCs) such as organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hexabromocyclododecane (HBCD). These results suggested that SCCPs were prone to accumulate in the lichen from the air and provided evidence for the role of lichens as a suitable atmospheric indicator in the Tibetan Plateau.  相似文献   
999.
Volatile organic compounds (VOCs), important precursors of ozone (O3) and fine particulate matter (PM2.5), are the key to curb the momentum of O3 growth and further reducing PM2.5 in China. Container manufacturing industry is one of the major VOC emitters, and more than 96% containers of the world are produced in China, with the annual usage of coatings of over 200,000 tons in recent years. This is the first research on the emission characteristics of VOCs in Chinese container manufacturing industry, including concentration and ozone formation potential (OFP) of each species. The result shows that the largest amounts of VOCs are emitted during the pretreatment process, followed by the paint mixing process and primer painting process, and finally other sprays process. The average VOC concentrations in the workshops, the exhausts before treatment and the exhausts after treatment are ranging from 82.67–797.46 , 170–1,812.65 , 66.20–349.63 mg/m3, respectively. Benzenes, alcohols and ethers are main species, which contribute more than 90% OFP together. Based on the emission characteristics of VOCs and the technical feasibility, it is recommended to set the emission limit in standard of benzene to 1.0 mg/m3, toluene to 10 mg/m3, xylene to 20 mg/m3, benzenes to 40 mg/m3, alcohols and ethers to 50 mg/m3, and VOCs to 100 mg/m3. The study reports the industry emission characteristics and discusses the standard limits, which is a powerful support to promote VOCs emission reduction, and to promote the coordinated control of PM2.5 and O3 pollution.  相似文献   
1000.
This work explored the influences of the drying and calcination temperatures on a Ce-Cu-Al trimetallic composite catalyst for the simultaneous removal of H2S and PH3. The effects of both temperatures on the structural features and activity were examined. The density functional theory method was used to calculate adsorption energies and further analyze their adsorption behavior on different slabs. Experiments revealed suitable drying and calcination temperatures to be 60 and 500°C, respectively. The capacity reached 323.8 and 288.1 mg/g. Adjusting drying temperature to 60°C is more inclined to form larger and structured grains of CuO. Rising calcinating temperature to 500°C could increase the grain size and redox capacity of CuO to promote performance. Higher temperatures would destroy the surface structure and lead to a crystal phase transformation, which was that the CuO and Al2O3 were gradually recombined into CuAl2O4 with a spinel structure. The exposed crystal planes of surficial CuO and CuAl2O4 were determined according to characterization results. Calculation results showed that, compared with CuO (111), H2S and PH3 have weaker adsorption strength on CuAl2O4 (100) which is not conducive to their adsorption and removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号